Software, Tools,
and loolkits

CS 34/
Maneesh Agrawala

| ast time

Visualizations can be represented as encodings that map from
data to marks & visual attributes based on data types

Our cognitive and perceptual systems determine which
encodings are effective: we (mis)read data If encoded poorly

Active research at frontiers investigating how users can create
effective visualizations and how readers take information
away from them

\éognition

Unit 5

cognitive models
visualization

Elale

C

on't forget the ¢

esign cognition that we alreac

y coverec

Software

Unit 6

Software, Tools and Toolkits
Content Creation

Today

[hreshold and celling

Changing problem representations

Learning programming

A Small Matter of
Programming

Software engineering Is a highly complex task, a microcosm of many
challenges in HCI

Making software engineering more accessible could empower
millions to customize applications and write programs

Programming ain’t easy

Developers struggle to recover others’ implicit knowledge by
inspecting code

Developers rarely hold all information needed for the task, ana
often must turn to the web

Just-in-time learning of new skills, claritying existing skills

Reminding themselves of detalls

Barriers span from conceptual (how is this even possible to code’)
to pragmatic (how do | express this?)

How do we aid
programming!?

Threshold and Ceiling

What is your programming
intervention actually doing!

What 1s Github Copilot's design goal! How do we know If 1t's
succeeding at that design goal!

Are some programming languages “better’ than others! How would
we know?

s the VSCode plugin helping?! With what!

Threshold/Ceiling Diagram

[Myers, Hudson and Pausch, TOCHI 2000]

Are you trvin
Threshold: C++ @ 4 Y
Nifficulty + to lower the
THEUEY 0 threshold, or
;Jse S Node, Python @ raise the
istance, often In »
oulf of execution CEI|Ing?

— sometimes In
oult of evaluation)

® H ML, C55
® Figma

Ceiling: Sophistication of what can be created (higher expressivity)

Lowering the threshold

Goal: reduce the effort and cognitive complexity of creating software artifacts

How to lower thresholds

One approach Is to reduce the celling (expressivity) In exchange for

smaller semantic distances

in gulf of execution or evaluation

Resular expressions are simpler to understand than context-free

grammars, but also less expressive

No-code or low-code front-end web frameworks can be fast to get off

the ground but limrited in what you can create

Python manages memory ana

carbage collection for you, but also trades

off some manual optimizability of memory to achieve It

But, not all lowered thresholds require lower cellings — we saw last
time how representations shape cognition (e.g. number scrabble) :

Asking ‘why’ questions of code

[Ko and Myers CHI '04, ICSE '09]

Debugging problems often
reduce to “why guestions,
but these questions are
challenging to answer

(=high threshold)

Analyze program traces to
answer many unanswered
“why'and “why not"

questions about what just

happened

Whyline for Java - Paint

;uhlcs | text exceptions

. PaimMWindow #1785

°°

.{
f)
l

" JComponom 'awmmCokao:mmnr' why did JComponent “currentColorComponent” get crea
; JPanel "colorPanel” >
" JP nel co nrolPanel”

of this filled r ecunon
objects rendering this

properties o

Clear the
Undo my las

ll_lmum ropainted.

| why dudnt paimtComponent() execute?
why dudn ist{) execute?

why 0kinY update() execute?
| why dudnt update() execute”

QD 99 9 9 @ s

o s

Data science notebooks

Automatic

import pandas as pd

import numpy as np
import matplotlib.pyplot as plt C ea . u p O

import scaborn as sns
fmatplotlib inline

upyter
notebooks

df = pd.read _csv('input/flavors of cacao.csv')

Data Exploration

tracking

Company (Maker-if Specific Bean Origin or REF Review Bean Broad Bean
known) Bar Name Date Type Origin

A. Morin Agua Grande 1876 2016 Sao Tome |q |q
A. Morin Kpime 1678 2015 Togo p rOve a C e

A. Morin Atsane 1676 2015 Togo

A. Morin Akata 1680 2015 Togo
dCIrOSS Ccells

Data Metrics

In [(4): df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1795 entries, 0 to 1794

Data columns (total 9 columns):

Company

(Maker-if known) 1795 non-null object
Specific Bean Origin

or Bar Name 1795 non-null object

REF 1795 non-null inté4
Review

Date 1795 non-null inté64
Cocoa

Percent 1795 non-null object
Company

Location 1795 non-null object

Programming by
demonstration (PBD)

Programming by demonstration (PBD): teach a computer a
program by doing it yourself while it watches

Challenges

There Is an infinite, and hugely branching, space of programs that might
be Inferrec

Inferred macros can be extremely brittle

PBD on the desktop

[Cypher ‘99‘ File Edit Go Tools Objects Font Style Eager
New Mail

Infer a macro by A Message
WatChing the user’s ?::'il:ct: jgz’lnesg:]ore good ideas

To: cypher@apple.com

behavior

Allen -

| was thinking about repetitive tasks th

Express and MacroMind Director. | can Qi
examples.

Joan

Modem PBD: Excel flash fill

Gulwani 201 1]

Leta Roowe, DOLIR Italy

Adele Varee Stumapnt TITRE Gevrrary
Diogo S<itasi Naw Yors, 18756, (A

How to use Flash Fill
in Microsoft Excel

https://www.youtube.com/watch?v=554Cb93ebso

Modern PBD: Excel flash fill

[Gulwani 201 ']

Develop a domain-specific language of string
transformations, and learn from examples
how to decompose It Into subproblems

: . : (_H{' .‘ I
Machine learning ranks between all possible output ifégjmoiinﬁw
valld programs e

Raising the ceiling

Goal: increase expressivity (range and sometime complexity of what can be created)

How to increase the ceiling

[dentity opportunities for untapped expressivity in the current
language, and position the software to expose that level of

expressivity

This i1s not about "adding knobs': it's about (metaphorically)
providing new paint colors in the palette

2

Non-programming examples

Engelbart’s chorded keyset
‘Engelbart 1968]

Musical instruments: the goal
sn't to reduce the threshold
to playing the plano — 1t's to
enable high musical
expressivity

Programmable artist brushes

'Jacobs et al. 201 8]

l1 - uarmeter . alpha ‘
»

Dynamic Brushes is a programming and drawing
environment for creating procedural drawing tools.

Attaching
computational
functions to
brushes
enables new
forms of
artistic
expression

23

Programming as problem
representation

Domain-specific languages

DSLs, or domain-specific languages, are programming languages that
are tallored to a specific domain

SQL (databases)

d3 /Vega Lite (visualization)

pytorch, keras, tensor flow (machine learning)

Successful DSLs reshape the cognitive representation of the
task, reducing the gulfs of execution and evaluation ana

CIm

bowering develo

bment In thelr application domain

25

Data science representations

| have too much data to fit iIn my computer. How do | count the
number of times the word “"HCI" appears on the web!

Representation: Map-Reduce

First, run a Map

That fu

Daralle

Second, run a Reduce

nction outputs the number of |
across every page on the web

Cls, anc

phase and aggregates them: here, via a sum

bhase that runs a simple function over each webpage.

can be run completely In

bhase that collects the outputs from the Map

26

Representations for vis

How do we tell a machine

his? Pain

1O create

O
)

O
O
O

L pixels!

200,000,000
400,000,000

600,000,000

800,000,000

1,000,000,000

1,200,000,000

t's extremely challenging until we
adopt a representation that

visualizations are encodings of
data types into marks

vl.markPoint ()
.data(data2000)
.encode (
vl.x().fieldQ('fertility'),

vi.y().fieldQ('life_expect'),
vli.size().fieldQ('pop"').scale({range: [0, 1000]}),
vl.color().fieldN('cluster")

)

.render ()

27

L earning programming

Logo: programming for children

[Papert [9380]

Constructionist learning: uelcone to Berkeley Logo
right

learning happens most
effectively when people are

forward 100
right 90
forward 100

DN W W W DN N W

. : : All About LOGO- right 90
mak”’]g ‘tang|:)‘e ObJeCtS How It Was Invented and How It Works forward 100
right 90
forward 100
L eso Mindstorms followed this MINDSTQRMS Zoruard 100
mold and was hamed after it Children, Computers,

and Powerful Ideas

WITH AN INTRODUCTION BY JOHN SCULLEY
AND A NEW PREFACE BY THE AUTHOR

SEYMOUR PAPERT s

Scratch

[Resnick et al. 2009]

Inherited from Logo:

Block-based programming

P

of simple animations and

games as a gateway 1o
programming for children

X. 231 . 180
New sprite: Q / Hf =

N
b

Make a Block

Backpack

Online python tutor

[Guo 201 3]
cmbeddable Python data structure visualization

Over 200,000 users and a dozen universities using It

) Frames Objects
def listSum(numbers):)

if not numbers: Global variables function
return 0 istSum listSum(numbers)

—p | (f, rest) = numbers | | l E
; 1 None
return f + listSum(rest) ListSum o 4 /
numbers l
f|1

rest l

1

2

3

4 else: myList tuple tuple tuple
5

6

/

2 myList = (1, (2, (3, None)))
9 total = listSum(myList)

Edit code

i | listSum

numbers [
{2

< Back Step 11 of 18 Forward >

line that has just executed
. rest

3

| earmner 71 wtrle dx b | Lmsrner G satule.an b | eamer | 7 ey s b Ilmarner || Inhran b leamer 16 Wil 4s b

Fdiring Pythan 2 | Fdiving Fython 2 Srenning Pythan Fdiving Fython) arenning Pythan

&t oyl el | fis " : JELY = 2503 ‘ .11 A '
: . - . vl b ne : u ’ 4 | 1) |
3 gariis’ 1 rar 3 ‘ L i - L . . L V. oketsucd
y ' . C owrl wrr . rimbrl
1 Lo B g "'7‘ N - "’ ’ 1 5] :
A STE wirl) . a T TN | . ' ‘" (M ST
'3y ! .
<2 S\ OS] M A AT - = - . 1 J
. ! prietl rycbErve B _opsEnr cimd
8 N J U DTS L LV T
‘ A H =Arcte N d O L . 4 reohe roNs)
Y | r4 ul - j
14 'S " A . a4 ':- " . 4 \ [“.4-
15 prict: 0 . B |4 raw. b Findl 3
15 ™ BRSNS @
17 orionl A Y 1 L[L cogcagaced’
1% prindy Boa o 17 mrinbl ¢
iV 14 AT 2 LS g
17 printirecharahedi=))
WAl , LNAL Lhat LNAL Lhat

Watch many learners code and debug in real tim

l

| samw |/ dratrar b Leanimer &5 Intrath | sammr 27 A b Lexniner =4 Intranh | eaxmaer 1| st rarh
‘NTe Ny Pyt - Faditing Fython 2 wTENNg Pyrthain - Fditing Fython 2 S Y Pyt /
def gon clayinparerd sgntence, a0 a o S0 R N, [TR AW R S R S) 13t F'thzsa’ . "are'. "same’ . Twerda ') d S ATTGNELN! L FUNL 2V N3E . S, SOAN
b v anpendi®; , ity
s e brd PHPIYY. N Y- b0 I Lok A N lf»” g .'l>_ A 1A L I Lh-‘
’ ! y \ > - - “ 1) p |) ' 4 e . ®° 9wl S vl o Lsdipest 1y
J SLAILIIN — Cfailng e en ndes J 0. accend(x) = o Pidas (o range(lent LeL)): . e ad el g Al e) e . 4 o P e '
i M <l 4 > < _qugendri) 1 'AF b
14 s syl 7) N4 ! mt 1. b . winm g
- N - tav chay on syt v s s baun) \ et) | Lllll.!'AJ st vddeas 1) s - ":"' 'f 1: A YU, ") L
0 (F char "t 14 J hells 1ol aLlyrn &€
> : . 18 1H
; CLILTL SN LR S I R
, " 19
s - wlial —= 3] pig! a . .
A (l ocen_nested Dsran L7 - daf focdland): L2 - dai odlap wind®, <dn):
1 AT SR AL 1¥ s L L) 1%} v 4
1 bar Clat) 130 - | v AP e oaedl cwnige W, L
a3 - ’JIL'J. ¢ \ s 4 \ o N \
2 11 i r P.'1"1" ==An-
1Y ey _mrstrd _parens ' v
14 pars b)’ A1 = At havimyl -8 11 el
14 oa N 'knl':'uE.-.(L) Li) efvnl "aiidiag 2] e, ¥,
| 1 - -1y '
1% (2 AR . ’-::fl.llvl: N ' IATRNY NS t 114 A | e l°h:'
{5 ' TS 11% Rt canam, Cwer gk g
| ™ :- L-':'
- " - ' '
vl Clra - lr"..lt:xtrru-' sl o imdux ul ol Tdlliigu Lhal No“'l\Z&H(J’ : Hl’.JL.‘-.| Mdili TS e
Mot detined
kll‘l
Ehal

Clustering student programs

' Glassman and Miller 201 5]

e s filtering by: Filter Rewrite Legend
nothing yet
lines that appear in atleast 50 submissions
showing 862 total stacks €D base=resultB
that represent 3842 total submissions def iterPower(base,exp):
m def iterPower(base,expB):
Largest stack (matching filters) Remaining stacks (matching filters) m def iterPower(base,expC):
@ @ o def iterPower(base,expD):
o def iterPower(resultB,expC):
def iterPower(base,exp): def &5 clif expC==1:
result=1 result
m else:
while exp>0: while exp>0:
resultx=base result=resultxbase €D exp-=1
exp-=1 m exp=exp-1
return result return resul €D exp=exps
€D expc—=1

def
v!._”|1
while exp>0:
result=resultxbase
exp=exp-1
return result

o expC=expC-1
for i in range(@,expB):
m for i in range(expB):
o iC+=1

&€ ic=0

m if exp==0:

m if expB==0:

if expC==0:

resultx=base

Programming tools often

Sttt o e either aim to reduce the

o otan Node, Python ® threshold or increase the

" somaimes - ceiling — how depends on
® HTML, CSS which one we're pursuing

® Figma

Ceiling: Sophistication of what can be created (nhigher expressivity)

successful programming tools shift our cognitive problem
representations to make the task more readily solvable

Jools for learning programming help externalize our cognition to
better understand what code Is doing (or ought to be doing)

34

References

Albaugh, Lea, Scott Hudson, and Lining Yao. "Digital fabrication of soft actuated objects by machine knitting." Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems. 2019.

Bertin, Jacques. Semiology of graphics. University of Wisconsin press, |983.

Brandt, Joel, et al. "Two studies of opportunistic programming: interleaving web foraging, learning, and writing code.” Proceedings of the SIGCHI|
Conference on Human Factors in Computing Systems. 2009.

Cypher, Allen. "Eager: Programming repetitive tasks by example." Proceedings of the SIGCHI conference on Human factors in computing systems.

1991

Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data processing on large clusters.” Communications of the ACM 51.1 (2008):
107-113.

Glassman, Elena L., et al. "OverCode:Visualizing variation in student solutions to programming problems at scale." ACM Transactions on
Computer-Human Interaction (TOCHI) 22.2 (2015): |-35.

Gulwani, Sumit. "Automating string processing In spreadsheets using input-output examples." ACM Sigplan Notices 46.1 (201 1): 317-330.

Guo, Philip J. "Codeopticon: Real-time, one-to-many human tutoring for computer programming.” Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology. 201 5.

35

References

Guo, Philip J. "Online python tutor: embeddable web-based program visualization for cs education.” Proceeding of the 44th ACM technical
symposium on Computer science education. 201 3.

Head, Andrew, et al. "Managing messes in computational notebooks.” Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems. 2019.

Jacobs, Jennifer; et al. "Extending manual drawing practices with artist-centric programming tools." Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. 201 8.

Ko, Amy |., and Brad A. Myers. "Debugging reinvented: asking and answering why and why not questions about program behavior." Proceedings of
the 30th international conference on Software engineering. 2008.

Ko, Amy |, Brad A. Myers, and Htet Htet Aung. "Six learning barriers in end-user programming systems.” 2004 |[EEE Symposium on Visual
Languages-Human Centric Computing. IEEE, 2004.

Ko, Amy |, et al. "An exploratory study of how developers seek, relate, and collect relevant information during software maintenance tasks." [EEE
Transactions on software engineering 32.12 (2006):971-987.

Ko, Amy |, Robert Deline, and Gina Venolia. "Information needs in collocated software development teams.” 29th International Conference on
Software Engineering (ICSE'OQ7). IEEE, 2007.

36

References

LaToza, Thomas D., Gina Venolia, and Robert Deline. "Maintaining mental models: a study of developer work habits." Proceedings of the 28th
international conference on Software engineering. 2006.

Mackinlay, Jock. "Automating the design of graphical presentations of relational information.” Acm Transactions On Graphics (Tog) 5.2 (1986):
| 10-141.

Myers, Brad, Scott E. Hudson, and Randy Pausch. "Past, present, and future of user interface software tools." ACM Transactions on Computer-
Human Interaction (TOCHI) 7.1 (2000): 3-28.

Norman, Don. Things that make us smart: Defending human attributes in the age of the machine. Basic Books. |994.
Papert, Seymour. "Mindstorms: children, computers, and powerful ideas." (1930).

Resnick, Mitchel, et al. "Scratch: programming for all.” Communications of the ACM 52.1 1 (2009). 60-67/.

Rheingold, Howard. Tools for thought: The history and future of mind-expanding technology. MIT press, 2000.

Satyanarayan, Arvind, et al. "Vega-lite: A grammar of interactive graphics.” |EEE transactions on visualization and computer graphics 23.1 (2016):
341-350.

Simon, Herbert A. "The sciences of the artificial.” (1969).

37

