
Software, Tools,  
and Toolkits

CS 347
Maneesh Agrawala

Last time

2

Visualizations can be represented as encodings that map from
data to marks & visual attributes based on data types

Our cognitive and perceptual systems determine which
encodings are effective: we (mis)read data if encoded poorly
Active research at frontiers investigating how users can create
effective visualizations and how readers take information
away from them

Cognition
Unit 5

cognitive models
visualization
(and don’t forget the design cognition that we already covered)

Software
Unit 6

Software, Tools and Toolkits
Content Creation

Today
Threshold and ceiling
Changing problem representations
Learning programming

5

A Small Matter of
Programming
Software engineering is a highly complex task, a microcosm of many
challenges in HCI
Making software engineering more accessible could empower
millions to customize applications and write programs

6

Programming ain’t easy
Developers struggle to recover others’ implicit knowledge by
inspecting code [LaToza, Venolia and DeLine 2006; Ko, DeLine and
Venolia 2007; Ko et al. 2006]
Developers rarely hold all information needed for the task, and
often must turn to the web [Brandt et al. 2009]

Just-in-time learning of new skills, clarifying existing skills
Reminding themselves of details

Barriers span from conceptual (how is this even possible to code?)
to pragmatic (how do I express this?) [Ko, Myers, and Aung 2004]

7

How do we aid
programming?

Threshold and Ceiling

What is your programming
intervention actually doing?
What is Github Copilot’s design goal? How do we know if it’s
succeeding at that design goal?
Are some programming languages “better” than others? How would
we know?
Is the VSCode plugin helping? With what?

10

Threshold/Ceiling Diagram�
[Myers, Hudson and Pausch, TOCHI 2000]

11

Threshold:

Difficulty to
use (semantic
distance, often in
gulf of execution
— sometimes in
gulf of evaluation)

Ceiling: Sophistication of what can be created (higher expressivity)

Are you trying
to lower the
threshold, or
raise the
ceiling?

C++

 Node, Python

Figma
HTML, CSS

Lowering the threshold

Goal: reduce the effort and cognitive complexity of creating software artifacts

How to lower thresholds
One approach is to reduce the ceiling (expressivity) in exchange for
smaller semantic distances in gulf of execution or evaluation

Regular expressions are simpler to understand than context-free
grammars, but also less expressive
No-code or low-code front-end web frameworks can be fast to get off
the ground but limited in what you can create
Python manages memory and garbage collection for you, but also trades
off some manual optimizability of memory to achieve it

But, not all lowered thresholds require lower ceilings — we saw last
time how representations shape cognition (e.g. number scrabble) 13

Asking ‘why’ questions of code�
[Ko and Myers CHI ’04, ICSE ’09]

Debugging problems often
reduce to “why” questions,
but these questions are
challenging to answer  
(=high threshold)
Analyze program traces to
answer many unanswered
“why” and “why not”
questions about what just
happened 14

YO
U READ THIS

Data science notebooks
Automatic
cleanup of
Jupyter
notebooks by
tracking
provenance
across cells
[Head et al.
2019]

15

Programming by
demonstration (PBD)
Programming by demonstration (PBD): teach a computer a
program by doing it yourself while it watches
Challenges

There is an infinite, and hugely branching, space of programs that might
be inferred
Inferred macros can be extremely brittle

16

PBD on the desktop�
[Cypher 1991]

Infer a macro by
watching the user’s
behavior

17

18

Modern PBD: Excel flash fill

[Gulwani 2011]

https://www.youtube.com/watch?v=554Cb93ebso

Develop a domain-specific language of string
transformations, and learn from examples
how to decompose it into subproblems
Machine learning ranks between all possible 
valid programs

19

Modern PBD: Excel flash fill

[Gulwani 2011]

Raising the ceiling

Goal: increase expressivity (range and sometime complexity of what can be created)

How to increase the ceiling
Identify opportunities for untapped expressivity in the current
language, and position the software to expose that level of
expressivity
This is not about “adding knobs”: it’s about (metaphorically)
providing new paint colors in the palette

21

Non-programming examples
Engelbart’s chorded keyset
[Engelbart 1968]
Musical instruments: the goal
isn’t to reduce the threshold
to playing the piano — it’s to
enable high musical
expressivity

22

Programmable artist brushes
[Jacobs et al. 2018]

Attaching
computational
functions to
brushes
enables new
forms of
artistic
expression

23

Programming as problem
representation

Domain-specific languages
DSLs, or domain-specific languages, are programming languages that
are tailored to a specific domain

SQL (databases)
d3 / Vega Lite (visualization)
pytorch, keras, tensor flow (machine learning)

Successful DSLs reshape the cognitive representation of the
task, reducing the gulfs of execution and evaluation and
empowering development in their application domain

25

Data science representations
I have too much data to fit in my computer. How do I count the
number of times the word “HCI” appears on the web?
Representation: Map-Reduce [Dean and Ghemawat 2008]

First, run a Map phase that runs a simple function over each webpage.
That function outputs the number of HCIs, and can be run completely in
parallel across every page on the web

Second, run a Reduce phase that collects the outputs from the Map
phase and aggregates them: here, via a sum

26

Representations for vis

[Bertin 1983; Mackinlay 1986; Satyanarayan 2016]

How do we tell a machine
to create this? Paint pixels?

27

It’s extremely challenging until we
adopt a representation that
visualizations are encodings of
data types into marks

Learning programming

Logo: programming for children�
[Papert 1980]

Constructionist learning:
learning happens most
effectively when people are
making tangible objects

Lego Mindstorms followed this
mold and was named after it

29

Scratch

[Resnick et al. 2009]

Inherited from Logo:

 

Block-based programming
of simple animations and
games as a gateway to
programming for children

30

Online python tutor�
[Guo 2013]

Embeddable Python data structure visualization
Over 200,000 users and a dozen universities using it

31

Codeopticon

32

Clustering student programs

[Glassman and Miller 2015]

33

Summary

Successful programming tools shift our cognitive problem
representations to make the task more readily solvable
Tools for learning programming help externalize our cognition to
better understand what code is doing (or ought to be doing) 34

Programming tools often
either aim to reduce the
threshold or increase the
ceiling — how depends on
which one we’re pursuing

References
Albaugh, Lea, Scott Hudson, and Lining Yao. "Digital fabrication of soft actuated objects by machine knitting." Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems. 2019.

Bertin, Jacques. Semiology of graphics. University of Wisconsin press, 1983.

Brandt, Joel, et al. "Two studies of opportunistic programming: interleaving web foraging, learning, and writing code." Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. 2009.

Cypher, Allen. "Eager: Programming repetitive tasks by example." Proceedings of the SIGCHI conference on Human factors in computing systems.
1991.

Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data processing on large clusters." Communications of the ACM 51.1 (2008):
107-113.

Glassman, Elena L., et al. "OverCode: Visualizing variation in student solutions to programming problems at scale." ACM Transactions on
Computer-Human Interaction (TOCHI) 22.2 (2015): 1-35.

Gulwani, Sumit. "Automating string processing in spreadsheets using input-output examples." ACM Sigplan Notices 46.1 (2011): 317-330.

Guo, Philip J. "Codeopticon: Real-time, one-to-many human tutoring for computer programming." Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology. 2015.

35

References
Guo, Philip J. "Online python tutor: embeddable web-based program visualization for cs education." Proceeding of the 44th ACM technical
symposium on Computer science education. 2013.

Head, Andrew, et al. "Managing messes in computational notebooks." Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems. 2019.

Jacobs, Jennifer, et al. "Extending manual drawing practices with artist-centric programming tools." Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. 2018.

Ko, Amy J., and Brad A. Myers. "Debugging reinvented: asking and answering why and why not questions about program behavior." Proceedings of
the 30th international conference on Software engineering. 2008.

Ko, Amy J., Brad A. Myers, and Htet Htet Aung. "Six learning barriers in end-user programming systems." 2004 IEEE Symposium on Visual
Languages-Human Centric Computing. IEEE, 2004.

Ko, Amy J., et al. "An exploratory study of how developers seek, relate, and collect relevant information during software maintenance tasks." IEEE
Transactions on software engineering 32.12 (2006): 971-987.

Ko, Amy J., Robert DeLine, and Gina Venolia. "Information needs in collocated software development teams." 29th International Conference on
Software Engineering (ICSE'07). IEEE, 2007.

36

References
LaToza, Thomas D., Gina Venolia, and Robert DeLine. "Maintaining mental models: a study of developer work habits." Proceedings of the 28th
international conference on Software engineering. 2006.

Mackinlay, Jock. "Automating the design of graphical presentations of relational information." Acm Transactions On Graphics (Tog) 5.2 (1986):
110-141.

Myers, Brad, Scott E. Hudson, and Randy Pausch. "Past, present, and future of user interface software tools." ACM Transactions on Computer-
Human Interaction (TOCHI) 7.1 (2000): 3-28.

Norman, Don. Things that make us smart: Defending human attributes in the age of the machine. Basic Books. 1994.

Papert, Seymour. "Mindstorms: children, computers, and powerful ideas." (1980).

Resnick, Mitchel, et al. "Scratch: programming for all." Communications of the ACM 52.11 (2009): 60-67.

Rheingold, Howard. Tools for thought: The history and future of mind-expanding technology. MIT press, 2000.

Satyanarayan, Arvind, et al. "Vega-lite: A grammar of interactive graphics." IEEE transactions on visualization and computer graphics 23.1 (2016):
341-350.

Simon, Herbert A. "The sciences of the artificial." (1969).

37

